
91 
 

UDC 514.7 
 

CONSTRUCTION OF SPATIAL PYTHAGOREAN HODOGRAPH 
CURVES BY GAUSS-RADAU POLYGONS 

 
Nataliia Bondarenko, assoc. prof. 
Anatoliy Kyrychenko, assoc. prof. 
Valentyna Otrashevska, assoc. prof. 
Kyiv National University of Construction and Architecture (KNUCA)) 

Abstract. The method for constructing spatial polynomial Pythagorean 
hodograph curves (PH curves) from the given Gauss-Radau polygon is 
considered. An equation has been found that describes infinitely many RH curves 
that have the same Gauss-Radau polygon. 
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Problem statement. Spatial Pythagorean-hodograph (PH) curves were 
first studied independently by Farouki and Dietz [1], and by Dietz et al. [2]. They 
established the conditions under which the arc length derivative of such curves 
with respect to the curve parameter is a polynomial rather than a radical function. 
This property offers numerous computational advantages in areas such as 
computer-aided geometric design, animation, robotics, and motion planning. The 
polynomial speed functions of PH curves allow for exact arc length computation, 
rational offset generation, and the determination of rational unit tangent vectors. 
PH curves are effective for interpolation and approximation of space curves, 
especially when a specific shape is required. The problem of constructing spatial 
РН curves with a given shape is of important practical importance. 

Analysis of recent research. To control the shape of PH curves, the use of 
a straightening control polygon based on Gauss-Lobatto quadrature was proposed 
in [3]. This approach preserves the desirable properties of PH curves while 
avoiding the drawbacks associated with modifying Bézier control points. As an 
alternative to the Bézier polygon, the Gauss-Legendre polygon of a PH curve is 
considered in [4], [5], with its vertices obtained by evaluating derivatives at the 
nodes of the Gauss-Legendre quadrature. A drawback of the Gauss-Legendre 
polygon is that it does not define tangent vectors at the endpoints. PH curves with 
the same Gauss-Legendre polygon may have different endpoint tangents, since all 
quadrature nodes are interior points. 

Formulation of goals. In this work, we consider the construction of spatial 
PH curves using a control polygon derived from Gauss-Radau quadrature, 
building on the methods described in [4], [5]. Employing the Gauss-Radau 
polygon, as an alternative to Gauss-Legendre and Gauss-Lobatto polygons, 
enables the development of another class of adaptive-shape spatial PH curves. A 
notable advantage of this method is that the Gauss-Radau polygon naturally 
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defines the initial tangent vector of the PH curve, since the initial point of the 
Gauss-Radau quadrature is a predetermined node. 

Main part. Let a spatial polynomial PH curve be defined by a quaternion-
valued function , , . We 
consider the concept of a Gauss-Radau polygon based on the Gauss-Radau 
quadrature over the interval . The Gauss-Radau quadrature with  nodes for 
an integrable function  defined on the interval , is a quadrature formula 
given by the expression 

. 

Nodes  for  are the roots of the polynomial , 

where  is the -th Legendre polynomial of degree . The weighting 
coefficients have the form: 

,    . 

Residual term is . 

The Gauss-Radau polygon of a curve  with  edges is defined as 
, where 

      , 

, for .    (1) 

. 

In [6] it is shown that the derivative  is the -square of some 

quaternion polynomial  of degree : . We write the 

polynomial  in the form of a Bezier polynomial , where 

 are Bernstein polynomials. 
Let  be the Gauss-Radau polygon of the curve  with 

 edges. Let us write equation (1): 

, , 
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Each of these equations can be represented in the form ([5]): 

                                 
, ,                   (2) 

, where . 

Equations                   (2) form a linear system with a unique solution 
, so the quaternion polynomial  depends on the 

 a set of free parameters . We show that the function 
 with a fixed parameter  describes all possible spatial PH 

curves in which the Gauss-Radau polygon with  edges is the given polygon 
. Thus, the polynomial , as a solution to the 

equation , specifies all spatial PH curves of degree  such that 
. 

Conclusions. Constructing spatial polynomial РH curves from a Gauss-
Radau polygon yields infinitely many curves with the same polygon, defining the 
tangent only at the initial point. This is useful for spline interpolation, where the 
initial tangent at internal nodes must be specified. 
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